AD714034

NG

THE UNIVERSITY OF MICHIGAN

Memorandum 32

CONCOMP

AN EXAMPLE DEFINITIONAL FACILITY IN MAD/I

Ronald J. Srodawa

QL U F_@r’?ﬂrg "i{?
i L
Reproduced by ¢ NOV 16 1970
NATIONAL TECHNICAL .
INFORMATION DA VI<E (NGRS
This documeut bas been upproved .

for public relcaso and salo; its
distribution is unlimited.

THE UNIVERSITY OF MICHIGAN

Memorandum 32

AN EXAMPLE DEFINITIONAL FACILITY IN MAD/I

Ronald J. Srodawa

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449
¥.H. Westervelt, Director

supported by:
DEPARTMENT OF DEFESNE

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

-
e

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1970

Abstract

The MAD/I language is a procedure-oriented algebraic
language which is a descendant of ALGOL 60 and 7090 MAD,
similar in power and scope to PL/I. The MAD/I compiler
is implemented using the MAD/I facility, a flexible trans-
lator-building system whose dynamic nature allows compilers
to be extended during the compilation process. This paper
demonstrates the extension of MAD/I to include several
graphics-oriented statements and operators through a lucid

example.

iii

1. INTRODUCTION

The MAD/I project of the University of Michigan-has
degigned and implemented a flexible translator-building
system called the MAD/I facility. The facility provides
services to aid in the lexical and syntactic scanning [3]
of the program, storage allocation, and object-code genera-
tion. A compiler is written in the facility as a set of
procedures, called a macro, to which is control passed at
various times by the syntactic scanner and by the contents
of the intermediate storage of tne partially compiled
programs. ﬁew macros can be redefined while a compiler
is executing, thus making extensions to the compiler (and
hence to the language) possible.

A compiler, called the MAD/I compiler, has been

implemented using the MAD/I facility. The language accepted
by the MAD/I compiler is called the MAD/I language [l]. The
MAD/I language is a procedure-oriented algebraic language
which is a descendant of ALGOL 60 and 7090 MAD, similar in
power and scope to PL/I. Because the MAD/I compiler is
written in the MAD/I facility, there is a great potential
for extensibility features within the MAD/I language. To
date, no extension ﬁacilities have been designed for the
MAD/I language; that is properly a goal of further research.
This report presents an example definitional facility
in the MAD/I language. A simple list-processing program is

written in the MAD/I language as extended to include three

—

new modes, three new statements, and eight new operators.
These extensions are written using the macro language of
the MAD/I facility and two experimental definitional state-
ments. These definitional statements, or similar ones
determined to be more appropriate, could easily be incorp-
orated as a‘part of the MAD/I language. For the moment,
they also are defined at compile-timé.

The remainder of this report explains in detail the
simple program and the code necessary to define the language
extensions. This explanation references the computer output
which appears at the end of the report. This output con-
sists of six parts:

(1) a listing of the contents of the file SKETCH

which is the sample MAD/I program,

(2) a listing of the contents of the DISPLAYDEF
which defines the extensions fo the MAD/I
language,

(3) a listing of the contents of the file DEFFACILITY

which defines the two experimental statements,

(4) a listing of the contents of the file -DATA which
contains the data used in the run of Step (6),
(5) the compilation of the MAD/I program, and
(6) the run of the generated object program using the
data i Step (4).
The object~code listing of the compilation has been removed

to reduce the bulk of the report.

T esom - e m———

=

2. SKETCH

The file SKETCH contains the sample MAD/I program.

This program maintains a simple list structure representing

points, lines, and collections of points called pictures.

The list structure can be manipulated or printed through

several commands which are recognized by the program.

These commands are:

POINT

LINE

PICTURE

MOVE

which adds a point to the list structure. The
user is prompted for the x and y coordinates of
the point. The point is assigned an internal
display number which is used to reference the
point in other commands.

which adds a line to the list structure. The
user is prompted for the internal display numbers
of the two endpoints of the line. The line is
defined in texrms of its endpoints and will be
moved appropriately if its endpoints are moved.
which groups several points together into a

collection called a picture. The user is

prompted for the internal display numbers of the

points in the picture. Whenever one point of
a picture ig translated, all the points in the
picture are translated.

which moves a point to new x and y coordinates.

The user is prompted for the display number of

the point and its new x and y coordinates. If
the point is in a picture, all other points in
the picture are also translated by the same
amount.
DISPLAY which prints a display of the current list
structure.

This program is oriented to staﬁdard typewriter
terminals, such as teletypes. It could easily be modi-
fied to interface to a remote graphics terminal using the
display subroutines developed as a part of the CONCOMP
Project [2].

Line 1 of SKETCH simply begins a procedure named SKETCH.

Line 3 of SKETCH includes the contents of the file
DISPLAYDEF which defines the new statements, médes,
and operators which will be used in this program.
The contents of DISPLAYDEF will be described in
the next section.

Lines 5 through 13 declare the modes of variables
used in the program. Note that 'POINT', 'LINE',
and 'PICTURE' are used as modes in declarations.
These have been defined as described for line 3
above. Line 5 causes all variables which are not
explicitly declared to receive the default mode
'INTEGER'.

Line 15 presets the number of pictures to zero.

- Lines 18 and 19 prompt the user for the next command
from his terminal. The first four characters of
the command are stored in the variable COMMAND.

Lines 21 trrough 120 form a compound 'IF' statement.
The subsection of this statement which corresponds
to the command entered is given control.

Lines 22 through 29 are invoked by the POINT command.
Note that line 25 uses the newly defined statement
'CREATE POINT' to create a point having the values
of X and Y as its coordinates. X and Y, although

. shown here as simple variables, can be gene.al
expressions. The operator .DISPN., which accesses
the internal display number from a point, is used
in line 26 to print the display number to the user.

Lines 32 through 39 are invoked by the LINE command.
The operator .ADROF. used on line 34 converts an
internal display number to a 'POINTER' to the
corresponding list structure item. The operator
.EVAL. also used on line 34 sets the storage allo-
cation of a based variable to the value of a
variable of 'POINTER' mode. In this case Pl and
P2 are allocated to the list structure items
corresponding to the two endpoints. ,EVAL, is
a built-in MAD/I operator whose name has since

been changed to .ALLOC.. The operator .POINT. used

T - A R BB

in line 35 returns a value of 'TRUE' if its
operand is a list structure item corresponding to
a point; 'FALSE' otherwise. Note that line 36
uses the new statement 'CREATE LINE' to create the

line whose endpoints are Pl and P2.

Lines 42 through 57 are invoked by the PICTURE command.

PICTURE is an array of up to 100 pictures, each
element being the head of a linked ring of points

in the picture. PICTUREN is the number of pictures
allocated thus far., Lines 43 through 47 increment

the number of pictures thus far, test to see that

less than 100 pictures have been formed, and initialize
the current picture to the empty set. The 0.AS.
('"POINTER') of line 47 is the empty picture constant
and would better have been written O.AS.('PICTURE').
As we will see later, 'PICTURE' has been defined

as a synonym for 'POINTER' which explains why

the former case works. Lines 48 through 55 are
executed once for each point in the picture. Lines

50 and 51 access the list structure item corresponding
tp the next point to be coded to the picture and test
that is a point. Lines 52 through 54 insert the

point into the picture using the 'CONNECT' statement.
A restriction in the implementation of ar experimental
define statement facility prevents us from rewriting
these three statements as the one statement

'CONNECT' P1 'TO' PICTURE (PICTUREN)

Lines 60 through 75 are invoked by the MOVE command.
Line 64 computes the difference between the new
coordinates of the point and the old coordinates of
the point. The two operators .XOF. and .YOF.
access the x and y coordinates respectively of
a point. Line 65 modifies the coordinates of the
point to their new values. Note that .XOF. and
.YOF. can be used on the left-hand side of an
assignment as they return a reference. Lines 66
and 67 test if the point is a member of a picture.
If the point is in a picture, line 68 accesses
the next point in the picture, and lines 69 through
73 are executed for =zach point in the picture until
we return to.the original point. The .NEXT. operator
returns a 'POINTER' result which points to the list
structure item representing the next point in the
same picture as its operand.

Lines 77 through 116 are invoked by the DISPLAY command.
This code runs through the entire list structure
and generates points and lines as sets of asterisks
in the array DISPLAY. This array is then printed to
give a visuq; depiction of the display on a type-
writer-like'terminal. Note that the variable HEAD
referenced in line 83 is a 'POINTER' to the first
item in the list-structure. The operator .HEAD.

referenced in line 109 returns a 'POINTER' to the

s gt o e i - —

list structure element which follows its operand.

This operator is used to traverse the list structure.

Line 119 is invoked if the command was not recognizable
based on its first four characters.
Line 122 transfers control back to line 18 where the
user is prompted for thé next command.
The remainder of the program consists of two small
| procedures for computing the minimum and maximum of two

values.

T e Tv——

3. DISPLAYDEF

The file DISPLAYDEF contains the definitions for the
extensions to the MAD/I language used in the preceding
program. In actual practice, packages of definitions such
as this would be written and used in programs much as
subroutines are written and used in programs at present.
Generally useful definitional packages would be provided
by 'system programmers for general use just as subroutine
libraries are now provided.

‘Lines 18 through 20 define the mode 'POINT' which is

simply a synonym for a based component structure.
The components are used as described in lines 11
through 16.

Lines 35 through 37 define the mode 'LINE' which is
simply a synonym for a based component structure.
The components are used as described in lines
28 through 33.

Line 43 defines the new mode 'PICTURE' which is
simply a synonym for ‘'POINTER'.

Lines 48 through 52 declare and preset the Qariables
which are used by the various statements and
operators of the definitional package. g

Line 56 includes the contents of the file DEFFACILITY
which defines the two experimental definitional
statements which are used below. The contents of

DEFFACILITY will be described in the next section.

. g e

10

Lines 64 through 74 define the statement 'CREATE

POINT' using the experimental definitional
statement 'DEFINE STATEMENT'. The 'DEFINE
STATEMENT' facility allows a new statement to be
defined in terms of other MAD/I statements. The
'CREATE POINT' statement consists of the keyword
'CREATE POINT' followed by three expressions which
correspond tor the identifiers POINT, X, and Y.
These three expressions will be ewaluated. Then
the MAD/I statements in the definition will be
executed, with the results of the three expressions
being substituted for sach occurrence of POINT,

X, and Y. Line 65 allocates a block of storage

to the expression corresponding to POINT, which
must be a reference to a variable of 'POINT' mode.
Line 66 and 68 insert this new point into the
chain of all items in the list structure. Line 68
initializes the point as not being an element of
any picture. Lines 69 and 70 assign the next
internal display number to this point. In an
application using a remote display this would be
an identification number for the element in the
remote display program so that light-pen detects
could be mapped back to the daﬁa structure in the

machine in which this program is running. ULine 71

11

sets the display item type to 1, indicating that
this is a point. Lines 72 and 73 set the x and y

coordinates of the point.

Lines 82 through 92 define the statement 'CREATE
LINE'. This definition is similar to that used
to define the 'CREATE POINT' statement above and |

[won't be discussed further. ‘

Line 100 defines the keyword 'TO' to be syntactically

} equivalent to the comma (,). This will allow us
to write 'CONNECT' A 'TO' B rather than 'CONNECT'
A,B. Note that this definition is done using the
experimental 'DECLARE SYNTACTIC CLASS' statement.

Lines 101 through 111 define the 'CONNECT' statement.
This definition is also made using the eaperiméntal
definitional statement 'BEFINE STATEMENT'. Lines
104 and 105 are executed if the second point is
already a member of a picture. In this case the

‘ new point is inserted into the existing ring.

Lines 116 through 124 define the operator .POINT.

which returns 'TRUE' if its operand is a point,

'"FALSE' otherwise. This definition is written
using the macro language of the MAD/I facility and
requires some explanation. If .POINT. A is written
we really want to transform that into A(4)=1, a
test of whether the type canponent of A is equal

to 1. Now .POINT. A will be converted by the

A LI MM"

12

syntactic scanner into the triple:

.POINT.,$TMP,A
where $TMP is an internally generated temporary
symbol which represents the result of the operation.
Now A(4)=1 would be converted by the syntactic -
scanner into the two triples:

.TAG.,$TMP1,A,4

=,%TMP2,8TMP1,1
where 3TMP2 is the result of the expression. Now,
if we define a macro whose name is .POINT., it
will be called by the syntactic scannér with two operands,
the temporary assigned and the operand, This
macro can in turn generate the two triples that
A(4)=1 would have generated.‘ Line 116 declares
.POINT. to be syntactically equivalent to
ABS.; that is, a unary operator with the same
left and right precedence values as .ABS.. Line
117 declares to the compiler that what follows
are to be considered as statements directed to
the MAD/I facility. Lines 118 through 123 define
the macro whose name is .POINT. and whose two
operands (parameters) are given the names T and B.
All identifiers in a macro definition, unless pre-
ceded by a &, are different identifiers than those
of the same name in the MAD/I program. Likewise,

all constants referenced in a macro definition, unless

13

preceded by 'LOCAL LITERAL', are self-defining
constants rather than literal constants within the
MAD/I program. Line 119 declares U to be a local

symbol within this macro. This is roughly equiva-

lent to automatic variables in higher-level languages.
Line 120 calls the macro TEMPORARY which assigns
a temporary symbol and causes U to become a synonym
for the temporary. This temporary will be used as
the result of the = operator. The macro TEMPORARY
is defined in the next section. Line 121 generates
the triple

.TAG., U,B,4
where U is the temporary result and B is the
operand of the .POINT. operator. The 'LOCAL LITERAL'
i keyword is required so that the symbol 4 represents

the MAD/I constant value 4 rather than a self-

defining term 4 in the MAD/I facility. Likewise
line 122 generates the triple
.'T'U'I

where T is the temporary result of the .POINT.

operator which has been passed as a parameter and
U is the reeplt of the .TAG. operation generated

by the preceding line. The LN is necessary pre-

ceding the "=" to indicate that this is the MAD/I
operator "=" rather than the MAD/I facility

NPT e

14

operator "=". These two triples generated are the
two we have previously discussed as being equivalent
to A(4)=1. Line 124 exits from the MAD/I facility.
Further lines are interpreted as being a part of

the MAD/I program being compiled.

Lines 129 through 186 define the operators .XOF., .YOF.,
.NEXT., .DISPN., .ENDA., .ENDB., and .HEAD. in a
manner similar to the definition of .POINT. discussed
above. In each case the expression involving
the operator, say .XOF.A, is to be mapped into an
instance of subscription such as A(5). The
operators differ only in the value of the subscript
used. In each case the triple resulting from the
syntactic scanning of the former case,

.XOF. ,$TMP,A
is translated into the triple which would result
from the syntactic scanning of the latter case,
.TAG.,8%TMP,A,5
In each case the operator is declared to be
syntactically equivalent to .ABS. through the
'DECLARE SYNTACTIC CLASS' statement and is semantically
defined through a very simple macro which generates
the corresponding .TAG. triple.
Lines 196 through 214 define the operator .ADROF. which

returns the .POINTER' to the list-structure element

15

which has been assigned the value of its operand as its
internal display number. The .ADROF. operator could be
represented in MAD/I by lines 190 throuch 194, However,
we have not yet implemented a statement which allows
operators to be defined in terms of MAD/I statements.
Instead, we have implemented the .ADROF. operator as a
macro which generates the same triples as would be generated
by the MAD/I statements shown. Line 199 defines Bl and
B2 to be local symbols. These will be used for the labels
required. Lines 200 and 201 assign temporaries to T1
through TS5. Line 202 calls the FLAD macro which assigns
two floating addresses and makes Bi and B2 synonyms for
these two floating zddresses. The macro is defined in
the next section. Line 203 is equivalent to the MAD/I
statement of line 190. Lines 204 through 207 are equiva-
lent to the MAD/I statement of line 191. Line 204
allocates the floating address Bl to the current value
of the instruction location counter. Lines 205 and 206
compute the Boolean expression

.DISPN. QQSV = A
while line 207 transfers to B2 if the expression result
is '"TRUE'. Lines 208 and 209 are equivalent to the MAD/I
statement of line 192. Line 210 is equivalent to the
MAD/1 statement of line 193. Lines 211 and 212 are
equivalent to the intended effect of the MAD/I statement
of line 194 which is to return a pointer to QQSV as the

result of the operator. Line 211 allocates the floating

16

address B2 to the current value of the instruction loca-
tion counter while line 212 computes the pointer to QQSV
assigning the result to T, the temporary assigned by the

syntactic scanner as the result of .ADROF..

17

4. DEFFACILITY

The file DEFFACILITY contains the definitions of the
'DECLARE SYNTACTIC CLASS' and 'DEFINE STATEMENT' statements
and the FLAD and TEMPORARY macros. Other macros have also
been defined or redefined as required to implement the
above. The macros uged to define these statements are
much more complicated than the macros used in the preceding
section and require a detailed knowledge of the MAD/I
'féciiity and MAD/I compiler in order to implement them success-
fully. We stress that users of MAD/I will not be required
to learn this detail, as appropriate higher-level definitional
statements such as 'DECLARE STATEMENT' will be provided
for them; only the system programmef assigned to MAD/I
need to know these details. .

Lines lo‘through 27 define the 'DECLARE SYNTACTIC

CLASS' statement. Line 1i causes 'DECLARE SYNTACTIC
CLASS' to be considered syntactically a keyword
which begins a simple statement. The macro named
'DECLARE SYNTACTIC CLASS' will be called by the
syntactic scanner whenever éhe keyword is encountered
in the MAD/I program. Lines 12 through 26 define

the macro 'DECLARE SYNTACTIC CLASS'. Lines 14

and 15 scan off the next symbol and insert a pointer
to its symbol table entry into the local symbol A.
Lines 16 through 19 scan off the next symbol and

e] (T RN DN

A e

s o

18

verify that it is 'SAME AS'. Line 20 scans off
the next symbol which is the one having the desired
syntactic qualities. Lines 21 through 24 set

the syntactic attributes in the symbol table

entry of the symbol being declared to the same
valueé as on the symbol already‘having the desired
syntactic class. Line 25'scans off the statement
terminator so that we are ready to return to the

syntactic scanner.

Lines 49 through 100 define the statement 'DEFINE

STATEMENT". Lines 52 through 99 define the macro
'DEFINE STATEMENT' which is called by thé syntactic
scanner whenever the keyword 'DEFINE STATEMENT'

is encountered. This macro scans the entire 'DEFINE
STATEMENT' statement sdope, saving its contents

as a list of symbol table pointers. It then

creates a macro (lines 81 through 97)'which

has as its name the keyword identifying the state-
ment being defined. This new macro is called by

the syntacﬁic gscanner whenever its namesake key-
waord is found in the input stream. It then will
call the syntactic scanner once for each expression
which is a part of the statement, modify the lexical
scanner (GETDSK) to return the symbol table pqinters

on the list formed above before continuing with

19

the standard input text, and call the syntactic
scanner asking it to scan the scope of a compound
statement. This scope, of course, consists of

the statements which define the new statement

saved on the list given to the lexical scanner.

Lines 108 through 126 define a macro named GETDSX.
This macro will be called instead of the pseudo-
oparation GETDSX; which itself is the entry-point
toc the lexical scanner. This new macro will nor-
nally simply call the pseudo-operation GETDSX
to lexically scan for the next symbol in the input
stream. However, if it is passed a list of symbol
table pointers via the global symbol GTDSXLIST
from a macro defining a new statement, it will
return the symbols from the list untillthe list is

f exhausted.

| Lines 131 through 144 define the macxo FLAD which
generates new floating addrwess symbols. This
macro is referenced by the .ADROF. macro from
the preceding section.

Lines 148 through 161 define the macro TEMPORARY which

E assigns new temporary result symbols. This macro

is referenced by seweral macros in the preceding
section.
Lines 167 through 223 re-define the macros GETTEMP

and FREETEMP to remove deficiencies in their original

A N A U e Rl

oo

20

implementation in the MAD/I compiler. These
macros have since been changed in the compiler

so that this update is no longer necessary-

R

21

5. -DATA

The file ~DATA contains the data presented to the
MAD/I program'in the run of Section 7. The program is
intended to be used from a terminal on a conversational
manner. Running the program in batch has required us to
anticipate the réquests for input and the assignment of
internal display numbers. The reader will find it helpful
to look at the printed output from the run with this data
(Section 7) while reading Sectipn 5. |

Line 1 requests a display of the current contents of
the list-structure. Since the list-structﬁre is
empty the comment *NOTHING TO DISPLAY." is
printed.

Lines 2 through 9 define four points having coordinates
(10,10) ,(10,40) ,(40,10) and (40,40). These points
are assigned internal display numbers 1,2,3, and
4, respectively. Line 10 requests the current
list-structure to be displayed, resulting in the
first graph showing the four points.

Lines 11 through 18 connect the four points with
lines forming a square. Line 19 requests the
current list-structure to be displayed, resulting
in the second graph showing the square.(This
looks like a rectandge because the horizontal scale

is 10 characters/inch while the vertical scale

s 53 oo,

T —

-—

22

is 6 characters/inch (before reduction)).

Lines 20 and 21 move the first point from its original
position of (10,10) to the new position (15,20).
Since this point is not a member of any picture,
it is the only point moved. Line 22 displays the
third graph showing the point moved to its new
location.

Lines 23 through 28 mark the four points as members
of the same picture. Lines 29 and 30 move the
first point from its current position of (15,20)
to the new position (20,20). The second, third,
and fourth points are also translated horizontally
by five raster units because they are members of
the samé.picture as the first pdint.‘ Line 31
causes the display of the fourth graph which

shows the results of this translation.

23

6. COMPILATION OF THE MAD/I PROGRAM
The fifth listing is the printed output resulting
from the compilation of the MAD/I program. This output
begins with 2 listing of the source program. Notice that
the contents of the files DISPLAYDEF and DEFFACILITY are

included at the points where the 'INCLUDE' statements are

encountered. Following the source program listing is the
output of the storage allocation phase, giving the storage
allocated to each variable and constant in the program.
Following that is a dictionary giving the attributes of
‘each variable and constant. Following that are the
external symbol dictionary, relocafion dictionary, and
statistics for the compilation. The object listing has

been left out because of its size (about 40 printed pages).

e S B A

]

24

7. RUN OF THE MAD/I PROGRAM
The last listing is the printed output resulting
from a run of the generated object module. This listing
consists of the loading map followed by the printed output
from the program. See Section 5 for an annotation of the

output from the run.

FRSERRETIRTITIIRL Y A W .

BIBLIOGRAPHY

l. Bolas, B.J., Springer, A.L., and Srodawa, R.J.,
The MAD/I Manual, Technical Report 32, Concomp
Project, Unzversity of Michigan, Ann Arbor,
August 1970.

2. Cocanower, A.B., The DF Routines User's Guide,
Memorandum 23, Concomp Project, University of
Michigan, Ann Arbor, May 1969.

3. Mills, D.L., The Syntactic Structure of MAD/I,
Technical Report 7, Conccmp Project, University
of Michigan, Ann Arbor, June 1968.

25

A ST N A

Appendix A. Contents of File SKETCH

SLIST SKETCH

MO GO NP WN

SKETCHs

NUTPGINT:

PICTA:

*PRUCEUURE® SKETCH.;
PINCLUDE® “(ISPLAYDEFW

'CECLARE® *NURMAL MODE® YINTEGERY;

YUECLARE® COMMAND *CHARACTERY (4);

*OECLARE® DISPLAY *FIXED AKRAY? (50,50) 'CHARACTER (1)
Y CECLARE? (PUINT PP 2,P3) 'POINT; '

'UECLAKE® LINF *LING?; .
'OECLARE® PIGTUKE *FIXED ARKAY?(100) "PICTURE;
'OFCLARE® Q¢1 YPOINTER? ;

*ULCLAREY g2 YPUINTER;

YUECLARE® (MyM1,M2) ‘FLUGATING?;

'PRESET® PICTUREN 3= '

"WRITEY | WeQENTER A CCMMAND PLEASE,ew;
'READY , %Ch,qam COMMAND ;

YIF' CUMMAND = "POIN";
'WRITE® o %o ENTER X AND Y COUKDINATES: aw;
'READ® 4 w2pew, x,y;
'IF* 1 <= X ¢ 50 >= X ¢ I <= v ¢ 50 >= v;
*CREATE POINT? PUINT s X¢ Vi

*WRITE® , ®w¢ ASSIUNED oIseLay NUMBER * y HI4*», ,DISPN, PUINT;

YELSE?;
'WRITE® , »¢ pPOINT IS UUTSIDE RASTER RANGE o * #w;
YENDY;

OR IF COMMAND = “LINE";
'WRITEY , = ENTER DL SPLAY NUMBERS QR END=PJINTSs 2un;
'READ® , n21em, X,Y;
Pl JEVAL. «ACROF, X; P2 «EVAL., ADRUF. Y
YIFY LPUINT. P} & <PUINT, P2;
'CREATE LINE® LINEPL1,P2;
CELSE;
'WRITEY , wo THCSE ARE NCT POINTS 0 8m;
*END?;

YOR [F* COMMAND = "PICTYW,;
"WRITE® o %o ENTER DISPLAY NUMBEKS FUR ALL PUINTS tan;
PICTUREN := PICTUREN+] ;

YIF®* PICTUREN > 10¢;
"WRITE® , w¢ TOU MANY PICTURES, tan;
CELSE';
PICTURE(PICTUREN) := 0 eASe (*PCINTER?);
YREADY o wjem, x;
YIF? X~z N3
Pl .EvAL. «ADRUF, X3
'IF? ~,PCINT. PLl, *GC TC? NOTPOINT ;
QU2 := PICTURE(PICTUREN);
'CONNECT p ey Que2;
PICTURE(PICTUREN) := w2
"G TC? PICTA;
*END?
*ENDY;

O

—

A-2
59 'OR IF* COMMAND = "MOVE™;
60 ‘WRITE® o "' ENTER DISPLAY NUMBER OF POINT AND NEW X, Y0 @w;
61 'READ® o "3le", DISX,Y}
62 Pl +EVAL. <ADROF. DIS:
63 ‘IF* = POINT, Pl, *GOTO* NOTPOINT;
66 DX 33 X=oXOF. Pl: DY s Y= ,YOF. Pl;
65 («XOFe Pl) 23 XUF. PL®DX3 (. YUF. Pl) 3= ,YOF, Pl+DY;
66 QUl = Pl(2);
67 YIF' QQLl +AS. (' INTEGER') ~= 0
68 P2 +EVAL. .NEXT., Pl;
69 MOVE A: *IF' LDISPN. Pl ~= ,DISPN. P2;
70 (e XOF e P2) 33 XOF. P2¢DX; [.YOF. P2) s YUF. P2
71 +0Y3
T2 P2 +EVAL. NEXT. P23
73 'GO TO* MCVEA;
T4 'END*
15 'END*;
16
17 *OR IF* COMMAND = ®Q1SP%;
78 YIF' HEAD .ASe. (°INTEGER') = 03
196 ‘WRITE® o "° ACTHING TO JISPLAY,'s%;
80 *GO TU' SKETCH;
8l YEND*: .
82 TFURY [3= 141415950, *FOR® J 3= 1,1,J>50, DISPLAY(I,J) = & w;
83 Pl <EVAL. HEAD;
84 DISPA: H
85 YIF' LPOINT, Pl
86 Ql 3= XUFe Pl Q2 2= YOF. Pl DISPLAY(Q2,Ql) := wewg
87 YELSE';
88 LINE .EVAL. (.PT. Pl);
89 QQl 3= LENDA. LINE; P2 .EVAL. QQ1;
9C QQl := ENU8. LINE: P3 .EVAL. QQl:
91 X1l 22 MINo(XUFe P2y oXOF, P3);
92 X2 :u M“.‘OXOF. PZ. .XOF. PBH
S35 YIFY X1 = X23%
S4 Y1 32 MING(.YOF. P2¢oYUF, P3)3}
S$5 Y2 3= MAX.(YUFe P24 YOF. P3);
96 FORY ¥ 2= Ylely ¥ > Y24 DISPLAY(YX]1) 3= %e&n;
97 ELSE*S
98 Ml 33 YCF., P3 ~ YUF. P2:
i 99 M2 3= XOFe P3 = JXUF, PZ;
- 100 M = M1/M2;
101 'FOR® X 33 XloloX > X23
102 Q2 = Me(X -~ .XOF. P2) ¢ YOF., P2}
103 DISPLAY(Q2¢X) 3= ®eu;
10« 'END';
105 *END"* 3
' 106 'END* ;
. 107 QQl := .HEAD. Pl
108 *IF® QQl <AS. (' INTEGER®) ~= O3
109 Pl +CVAL. oFEAD. Pl;
110 'GO T0* DISPA;
111 YEND';
112 'WRITE® , %°]) «*o10¢(°* LR E A
113 'FOR? 3z 50,=1, 1 < 1,
114 *WRITE® 4 "]3,52CLl.1l%%, [,n n,u,n,
115 OISPLAY(191)eeosDISPLAY(],50)
116 ‘WRITE® , % «*410("* «t)un;
117
118 *ELSE*;

- ‘mwmmwuw .*"gﬁi

END OF FILE

\19
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

135
136

MIN:

MAX2

END;
G0 TO' SKETCH}

PRUCEDURE? MIN.(X,Y)3
CINTEGER SHORT® {X.Y);
CIFY X <= Y, YRETURN® X3
'RETURN® Y; '
TEND* 3

'PROCEDURE® MAX.(A.B);

* INTEGER SHORT® (A48)3
SIF* A >= By 'REVURN' A;
'RETURK®. B}

TEND!;

END?

.
ey

A-3

'WRITE? ¢ "' ILLEGAL COMMAND®#*%;

S s
.

Appendix B. Contents of File DISPLAYDEF
LIST DISPLAYDEF

1 <<
2 DISPLAY DEF INIT IONAL PACKAGE
3
4 THE FOLLOWING PARAMETER STATEMEN' DEFINES THE COMPUNENT STRUCTURE
5 FOR A POINT. ThE USER SIMPLY USES *POINT® AS A MODE NAME IN
6 EITHER A SDECLARE® STATEMENT OR AN & CCASTRUCTION. NOTE THAT
7 THE STATEMENT
8 SPUINTS IVARIABLE LIST)
9 WILL NUT WORK BECAUSE THIS 1S SIMPLY A PARAMETRIC SUBSTITUTICN.
10 THE STRUCTURE UF A PUINT IS
11 1 POINTER POINTER TO NEXT LIST ITEM i
12 2 POINTER POINTER TU NEXT ITEM IN SAME PICTURE
13 3 INTEGER SHORT DISPLAY ITEM NUMBER
14 4 INTEGER SHORT OISPLAY ITEF TYPE (1 FOR A POINT) |
15 5 INTEGER SHORT X CUOKDINATE OF THE POINT |
16 6 INTEGER SHORT Y COCKGINATE OF THE POINT
17 » .
18 SPARAMETER® 'POINT® SBASED® SCUMPONENT STRUCTURE'I®POINTER®,
19 *POINTER® ¢ * INTEGER SHORT® o9 INTEGER SHURT® (9 INTEGER SHORTY,
20 SINTEGER SHORTS) *ENDP®
21 <«
22 THE FOLLOWING PARAMETER STATEMENT DEFINES THE COMPONENT STRUCTURE |
I 23 FOR A LINE. [HE USER SIMPLY USES LINE® AS A MUDt NAME IN & ITHER A
[24 SCECLARE® STATEMENT OR AN @ CONSTRUCTION. NOTE THAT THE STATEMENT ,
25 SLINE® IVARIABLE LIST) |
26 WILL NOT WORK BECAUSE THIS IS SIMPLY A PARAMETRIC SUBSTITUITION. l
I 21 THE STRUCTURE OF A LINE IS
28 1 POINTER POINTER TO THE NEXT LIST ITEM
29 2 PUINTER POINTER TO THE NEXT ITEM IN THE PICTURE
30 3 INTEGER SHORT OISPLAY ITEM NUMBER
31 4 INTEGER SHURT OISPLAY ITEM TYPE (2 FOR A LINE)
32 5 POINTER POINTER TO FIRST END-PUINT
33 6 PUINTER POINTER TO SECOND ENO=-POINT
34 >
35 SPARAMETER® 'L INE® *BASED* *COMPONENT STRUCTURE®(*POINTER®,
36 *POINTER® o * INTEGER SHORT®4¢ INTEGER SHORTY,*POINTER®,
37 SPUINTER®) ENDP®
38 <<
36 THE FOLLOWING PARAMETER STATEMENT OEFINES THE MODE UF A PICTURE.
| 40 A PICTURE IS A PUINTER TO ONE OF THE ITEMS IN THE PICTURE. HENCE
4l IT IS SIMPLY PARAMETERIZSD TO *POINTER® MODE.
42 >
43 SPARAMETER® 'PICTURE® *POINTER® *ENDPY
4k <<
45 THE FOLLOWING STATEMENTS DEFINE THE GLOBAL VARIABLES USED BY
%6 THE DEFINITION PACKAGE.
I 47 >>
;48 SOECLARE® OISPLAYN *INTEGER SHORT®;
49 *PRESET® OISPLAYN s= 03
50 *OECLARE' GQSV 'PGINT®;
51 SOECLARE®' WEAD *POINTER®;
52 SPRESET' HEAD = 0;
53 <<) ¢
| 54 THE FULLOWING BRINGS IN THE DEFINE FACILITY FROM THE FILE DEFFACILITY
55 >
56 SINCLUDE® "DEFFACILITY"
57 <<
Y THE FCLLOWING DEFINES ThE STATEMENT

B-1

- ' T S

>>

<<

>>

<<

>

€«

»

YCREATE POINT' POINTyXyY
WHICH HAS THE EFFECT OF THE LIST OF STATEMENTS SHOWN

YOEFINE STATEMENT® °CREATE POINT® POINToX,Ys
YALLOCATE' POINT;
POINT (1) == HEAD;
HEADugs PV, POth;
POINT (2) s= (0 AS. ('POINTER')):
DISPLAYN = DISPLAYNe®];
FOINT(3) 3= DISPLAYN;
PUINT (&) 3=]1;
POINT(5) = X3
POINTL6) := V;
CEND STATEMENT®;

THE FOLLOWING DEFINES THE STATEMENT:
"CREATE LINE' LINE,PL,P2
WHICH HAS THE SAME EFFECT AS THE LIST OF STATEMENTS SHOWN

*DEFINE STATEMENT® °'CREATE LINE' LINE,P1,P2%
CALLOCATE® LINE: .
LINE(1l) ::: HEAD;
HEAD o= i1 T, LINE: .
LINE(2) 3= (0 AS. ('POINTER®'))
DISPLAYN 3= DISPLAYN®];
LINE(3) 3= DISPLAYN:
LINE(4) = 23
LINE(S) = ,PT, Pl v
LINELG) 3= ,PT. P2; :
CEND STATEMENT':

THE FOLLOWING OEF INES THE STATEMENT
*CONNECT® PCINT *TO* PICTURE
WHICH HAS ThE SAME EFFECT AS THE LIST OF STATEMENT SHOWN

DECLARE SYNTACTIC CLASS® °*TO' 'SAME AS* 4 3
‘DEFINE STATEMENT® °*CCNNECT' POINT *'TO* PICTURES
QQl 3= PICTURE;
YIF* (QULl .AS. ('INTEGER!)) = C;
PICTURE 3= PT, POINT; '
POINTL2) 3= PT, PUINT:
SELSE*; s @
QQSV .EVAL. PICTURE;
POINT(2) 3= CCSVi2);
QQSVI2) 3= .PT. POINT;
END;
*END STATEMENT';

fhk FOLLOWING MACRO DEFINES THE .PUINT. OFcRATOR AS A PASS UNE MACRO.
IT CAUSES POINT, A TO BE TREATED AS A(4) =1 >

YDECLARE SYNTACTIC CLASS® POINT. *SAME AS' .ABS.;
YUEFINE* '
MACRG..PQ!NT.'T,B;

B-2

119 LOCAL.U;
120 TEMPORARY yU 3
121 o TAGe yUsBo*LUCALLITERAL® 43
122 LN=yT,Uy*LCCALLITERAL"® 1}
123 MENDy «POINT W
124 END?
125 <L
126 THE FOLLOWING MACRO DEF INES +XDFe. AS A PASS ONE OPERATOR.
127 IT CALSES «XOF. A TO Bk TREATED AS A(S5)
128 >>
129 SUECLARE SYNTACTIC CLASS' XDF. *SAME AS®' .ABS.;
130 SODEFINE*;
131 MACRD g e XUF o9 ToAS
132 oTAGe 9 TyAy* LOCALLITERALY 53
133 MENDy« XOF. 3
134 END;
135 <<
136 THE FOLLOWING CAUSES .YOf. TO BE DEFINED AS A PASS UNE DPERATUR
137 «YOF. A HAS THE SAME EFFECT AS A(6)
138 >
139 *OECLARE SYNTACTIC CLASS® YDF, *SAME AS' ,ABS.:
140 ‘ $DEF INE*;
141 "MACRC 9 <YOF 9T oA
142 eTAGe 9 ToA9*LOCALLITERAL® 63
143 MEND¢oYOF .
144 END3
145 - <<
146 THE FOLLUWING DEFINES «NEXTe A TO BE THE SAME AS A(2)
147 >
148 SDECLARE SYNTACTIC CLASS' NEXTe "SAME AS' .ABS.:
149 YDEF INE*;
150 . MACRD ¢ s NEXT o 9T oA
' 151 oTAGe s ToAo*LOCALL ITERAL® 23
] 152 MEND,«NEXTe
, 153 END;
154 <<
] 155 THE F